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a semi -infinite solid. This preliminary three-dimensional model, along with the

two—-dimensional parametric results demonstrate technical feasibility of the
overall modeling approach.

In addition, the results provide a strong analytical
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extended data bases for practical design of interacting coated solids for a

wide range of practical applications. /
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1. INTRODUCTION

The tribological behavior of the materials present at the interface between machine
elements subjected to sliding interaction very often dominate the overall behavior and life of
the entire mechanical system. Friction and wear of bearings, gears, cams and similar compo-
nents, is a significant problem in a wide range of both DOD and commercial applications. The
use of lubricating oils and greases is well known for reduction of friction and wear and as a
result improvement in life of the overall mechanical system. However, these conventional
lubricants can only perform satisfactorily in a limited range of operating temperatures. In the
very high temperature environment of modern gas turbine applications, solid lubricants ofter,
perhaps, the only means of lubricating the interacting mechanical elements. Similarly at
cryogenic temperatures, solid lubrication offers the only potential for reducing friction and
wear between mating surfaces. Very often solid lubrication under the extreme operating
environments is accomplished by applying one or more coatings of certain materials, which
offer favorable tribological characteristics, to the mating surfaces. Quite often several thin
coats of different materials may be used or certain composite materials may offer favorable
friction and wear characteristics. The thermo-mechanical behavior of the coatings may vary
from fully isotropic to highly anisotropic. In general, due to the greatly different constitutive
behavior of the coatings compared to that of the substrate, an acceptable design of a coating-
substrate system is dependent on realistic modeling of the stresses in the coatings in a
prescribed operating environment. The stress distribution in the coating determines its
mechanical survival; the tensile stresses in the coating are often responsible for fracture
initiation while both the shear and tension at the coating/substrate interface affects the
adhesion, or mechanical bond, of the coating to the substrate. A rigorous analytical modeling
of these stresses as a function of materials properties and coating thickness is, therefore,
essential. In addition to the prediction of optimum values of coating thickness for prescribed
materials in a given operating environment, the models may be used to parametrically evaluate
critical design parameters, such as shear and tensile stresses at the coating to substrate
interface, thermal stresses induced by the difference in thermal coefficient of expansion
between the coatings and substrate and realistic endurance limits when the coated elements
are subjected to cyclic loading, to arrive at significant recommendations for the required
materials for more advanced applications. The development of analytical models to compute
the thermo-mechanical behavior of coated solids is, therefore, the primary objective of this
project.

Due to a rather wide application potential, the analytical modeling of the contact
mechanics and interfacial interactions in coated solids has been of significant interest in the
recent years. In the past, both the solution to the contact problem and the stress distribution
in the coating as a function of the prescribed boundary loading have been attempted. The
solution to the contact pressure profile in the case of cylindrical contact between coated elastic
solids has been obtained to varying degrees of sophistication by a number of investigators [ 1-8].
Most of the carly work [1-5] considered an asymptotic problem of a very thin or thick coating.
Meijers (5], while considering an elastic layer over a rigid substrate demonstrated that the
solutions for a thin and thick layer overlap so well that these solution may apply to arbitrary
layer thicknesses with excellent approximation. Wu, Chiu and Pao [6,7] considered the classical
stress function approach to the contact problem of coated solids, and they clearly demonstrated




the mathematical complexity of the problem, particularly the numerical convergence problem
as the material of the coating tends to become incompressible. Gupta and Walowit [8] resolved
this problem by considering a Fourier transform of the Airy stress function and they obtained
solutions where both the coating thickness and the coating to substrate modulus ratios may
assume arbitrary values; in addition, they demonstrated that the Poisson’s ratio may also be
arbitrary and therefore, the incompressible materials may be properly modeled. In the area
of stress distribution in the coating, most investigators considered either a uniform or an
elliptical boundary loading. Lemcoe [9] considered a uniform pressure over the contact zone
on a hard coating resting over a relatively soft substrate. Results for the stress distribution in
the coating and substrate were presented for the cases when the coating is either in frictionless
contact or bonded to the substrate. Barovich, et al. [10], used an elliptical pressure profile and
obtained stress distribution when the ratio of modulus of elasticity of the coating to that of the
substrate varied in the range of 0.25 to 4. Later Ku, et al. [11], considered surface shear and
presented similar results for both elliptical and uniform shear prescribed at the coating surface.
Based on the general solution to the contact problem [8], Gupta, Walowit and Finkin [12]
considered an arbitrary pressure and shear loading on the coating surface, and they presented
results for stress distribution in the coating, substrate and at the coating/substrate interface for
a wide range of material properties. For practical designs, the work of Gupta and Walowit
[8,12] has been implemented ina FORTRAN computer code, LAYER [13}, which is presently
operational on personal computer systems.

With particular emphasis on both DOD and commercial application, the models
discussed above have several limitations; first, most of the models are restricted to a one
coating system; second, essentially all of the modeling effort has been dedicated to the
simulation of mechanical loadings and the thermal problem has been greatly neglected; finally,
the modeling process has been restricted to fairly well defined plane strain contacts and
application to real practical components with complex geometries, such as bearings and gears,
has been restricted. Since, on tribological grounds, there is a definite potential for the use of
multicoated configurations and substantial thermal gradients are often present, refinements
of the current models to help eliminate both these restrictions are essential for the develop-
ment of viable analytical tools. In addition, analytical techniques for developing realistic
solutions for complex geometries and simulations of three-dimensional contacts are essential
for the performance predictions of practical components. The recent advancements in finite
element methods offer substantial potential in this area. The finite element algorithms permit
modeling of all geometrical and thermal effects. However, before the model can be used for
practical design, validation against other numerical solutions and experimental data is essen-
tial. An advancement of the current models for plane strain contacts and the initial formulation
for a finite element model are, therefore, the objective of Phase I of the proposed project. The
technical feasibility of the finite element approach is proven by validating the solutions
obtained under plane strain conditions against similar solutions obtained by other proven
numerical techniques for such simplified contact geometries. In addition, the practical signif-
icance of the modeling approach is demonstrated by parametric computer runs which show
the variation of stresses as a function of material properties and coating thickness. Thus, the
overall feasibility of the modeling approach for materials selection and practical design in a
given operating environment is demonstrated.




2. ANALYTICAL APPROACH

The contact problem of a coated solid is shown schematically in figure 2-1, where a
coating of finite thickness is applied to a semi-infinite substrate. Under simplified plane strain
conditions, such a configuration could simulate either a pure rolling contact, or a combined
rolling-sliding contact as would occur in rolling element bearings, gears or cams. The elliptical
loading, shown in the figure, may have three components: normal loading, shear loading and
thermal loading. For normal loading, the pressure distribution p(x), for a Hertzian line contact
is given by the relationship

pe) = pu[1- 7] ()

where pi; is the maximum Hertz pressure and a is the contact half width.

The surface shear loading t(x), corresponding to a prescribed friction or traction
coefficient, 4 , may be written as a product of the normal contact pressure and the traction
coefficient

T(x) = upx) €S

If the slip rate between the two interacting surfaces is , then the thermal loading would
arise from the flux, ¢, dissipated into the coated surface, which is given by the relationship

P(x) = Buup() &

where g is fraction of heat transferred to the coated surface under consideration while the
remainder goes to the other surface.

Using the above three types of general loading, two different analytical approaches are
considered: a finite element approach which permits modeling of any geometry and a Fourier
transform approach which provides numerically accurate solutions for a simplified contact
geometry. With the ultimate objective of developing viable design tools for a wide range of
practical applications, the technical feasibility of finite element approach is demonstrated by
validation of the finite element solutions against corresponding solutions obtained by the
Fourier transform approach and the classical Hertz contact theory. The highlights of both
approaches are briefly discussed below.

2.1 Finite Element Modeling

The two of the most commonly available finite element codes are NASTRAN and
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Figure 2-1.  Coordinates for stress analysis in coated solid.




ANSYS. Both of these packages have the capability of modeling all three types of loading
discussed above. However, ANSYS is readily available for personal computers, and its
interactive user interfaces are, perhaps, more developed for efficient solutions of a wide range
of problems on a personal computer. Due to such a readily available capability, he PC-ANSYS
is selected for the present investigation, although the personal computers are still limited in
terms of overall computing power required for sophisticated finite element modeling. Once
the overall technical feasibility of the finite element approach is proven in the present Phase
I effort, a more rigorous modeling shall be undertaken in the second phase of this project. In
fact, as will be discussed later, the use of NASTRAN may be more appropriate in Phase II,
since it is presently supported on the ASD computer system at Wright-Patterson Air Force
Base. The transition from PC to main frame, or even from ANSYS to NASTRAN is indeed
quite straightforward.

Similar to NASTRAN, ANSYS runs in three stages: a preprocessor, the main processor
and a postprocessor. The preprocessor generates an input file for the main processor which,
in turn, generates the stiffness matrices, computes element solutions and generates a binary
output file for postprocessing. The postprocessor takes the output file and generates ASCII
text and graphical outputs.

For the present problem, the element type and geometry, material properties and the
mechanical and thermal loading parameters are all input via the preprocessor. Although the
normal loading can be specified directly in terms of the prescribed contact pressures, the shear
loading needs to be input in terms of forces at each node on the surface. In addition, the thermal
loading is input in terms of a temperature field. The temperatures at each of the nodes are
generated from a finite difference analysis, described in the Appendix. To prescribe all these
inputs efficiently a personal computer based "pre-preprocessor” program has been written.
This program generates the grid points (either automatically or from the optional user supplied
data), computes temperatures at each point, computes normal and shear nodal forces on the
surface and transmits all the data to input file as required by the ANSYS preprocessor.
Installation of this input data preparation program to the main frame computer system, in
Phase 11, is quite straightforward.

Similar to the input data preparation effort, some analysis of the output from the
ANSYS postprocessor is required for efficient handling of the output data. Thus a "post-
postprocessor" is written to provide some degree of database management of multiple ANSYS
output files, provide means for superposition of stresses obtained from various solutions,
enable extended data reduction in the form of additional dimensionless quantities, provide
improved output quality with convenient units and smoothing, and finallv to obtain usable hard
copy. Again, transfer of this procedure for use on main frame computer system, in Phase I,
can be very easily carried out.

2.1.1 Element Generation Procedure
The type of element geometry used is shown in figure 2-2. The normal Hertzian loading

in the contact zone is shown by arrows. To accurately represent a semi-infinite geometry to
compare the solutions with those obtained from the Hertzian theory, the geometry used
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extends 100 half widths in the positive and negative x and y directions.

Four node isoparametric elements with two degrees of freedom at each node are used
in all two dimensional models. In order to capture rapid variations and produce accurate
solutions, very fine mesh sizes are required in the y direction near the surface and near the
coating to substrate interface. Also, due to the elliptical variation of surface loading, fine mesh
sizes are needed near the edges of the contact. The method of mesh generation is illustrated
in figure 2-3 which presents an enlarged view of the element geometry near the contact zone.
The minimum mesh size, location of the outer boundaries, and the number of grid points in
each direction are taken as inputs. Values for these quantities are dictated by trade-offs
between overall accuracy, available storage and computing speed. In the absence of a coating,
the minimum meshsize iny directionis used at the surface. An appropriate ratio, r, is calculated
so that the length of each successive element in the y is r times that of the preceding element
and the outer boundary is reached at the prescribed number of mesh points. A similar
procedure is used for x direction. The x grid is taken to be symmetric about the center of
contact. The prescribed minimum grid size in the x direction is used at the edge of contact.
The number of elements between the center and edge of contact, and between the edge and
outer boundary, are equal. Appropriate r values are calculated for each region.

Asimilar procedure isused for grid selectionin the x directionwhen a coating is present.
Initially, the procedure described above to calculate the r values in y direction is also used in
the presence of a coating. The minimum grid size is then adjusted such that the grid line, which
was initially the first line past location of the coating, falls directly on the coating location. The
same r value is then used with the remaining number of points to generate the grid between
the coating and the outer boundary. Finally, two additional grid lines are inserted at a distance
equal to the prescribed minimum grid size on each side of the coating. The grid generated in
this manner is shown schematically in figure 2-4.

The above procedure for grid generation assures relatively high accuracy with a given
number of grid points in 4 rectangular region,

2.1.2 Inputs to the Finite Element Model

Aside from the various thermal parameters outlined in the Appendix, the elastic
modulus, Poisson’s ratio and the thermal coefficient of expansion are required for both the
coating and substrate material. Asan example, the data shown in table 2-1, are used to generate
finite element solutions at varying values of coating thickness. The thermal partition parame-
ter, 3, as discussed above is assumed to be unity, which means that the entire heat generated
on the surface is transmitted into the coated solid. This may, indeed, be a conservative
assumption. All the linear dimensions and stresses are respectively scaled relative to the
contact half width, ¢, and the Hertzian contact pressure, ph.

Solutions are obtained with both normal and shear loading on the surface. Anelliptical
distribution, conforming to equation (2-1) is used for both types of loadings. Also, the thermal
flux is also assumed to be elliptical in accordance with equation (2-3).
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Inaddition to the above parameters, the following two boundary conditions, prescribed
with reference to the coordinate frame shown in figure 2-1, complete the input data to the
finite element model:

1. The force on the coating surface outside the contact region (y=0, |x|>a ), and at
the ends ( |x|=100a ), is zero.

2. Deflection is zero at all distant points (y=100a).

Table 2-1
Input Values Used in Finite Element Analysis
Symbol Description - ~\ Value ]
ph Maximum Hertz pressure (Pa) 1.0¢10”
74—"_ Traction coefficient o q_hl-; ]
En Coating elastic modulus (Pa) - | 4.0 101
E? Substrate elastic modulus (Pa) o 20 x10M
Vi Coating Poisson’s ratio 103
v2 Substrate Poisson’s ratio - Jo3
* Coating thermal coefficient expansion (/') | 2.78x107°
@2 Substrate thermal coefficient expansion /°C) | 5.56x107°
P Peclet number 1 100
N Nusselt number 0
Tr Reference loading temperature (°C) S0
T  Ambient temperature “C) - ,,,2,_(,);4, ]
KKz B Conductivity ratio R
Kip2c2/ K2pici Diffusivity ratio 1

* For the results to be applicable to any value of traction, they are generated with a unit
coefficient. Thus the results obtained with surface shear may be multiplied with appropriate
traction coefficient when applying them to a specific contact.

2.2 Numerical Integral Model

An alternative numerical approach to compute the stresses in a coated solid is based
on the work by Gupta and Walowit {8] and Gupta et al. [12]. The approach is primarily based
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on a plane strain tormulation derived from the Fourier transform of the classical Airy stress
function. With reference to the coordinate frame shown in figure 2-1, the stresses
Ox, Uy, and Txy , are respectively given by the relations:

2 0 2
d 1 d°G -
Oy = _w = Ef __E_e lwxda)

8y2 —® dy (2-4)
2 o0 )
gy = 81'/7) = ——1—f w? G e "* dw
ax* Y o (2-5)
2 00
- _9dy _ 1 f i 4G ~iwx
Txy oy Y i dy e dw 26

where ¥ is the Airy stress function which satisfies the biharmonic equation and G is the Fourier
transform of ¥, symbolically,

vy =0 (2-7)

and

— (2-8)

Also, the normal strains, €x and ¢y, and the displacements, « and v, along the x and y
direction are given by

| —

2
Ex:-[(l—v )(}x'—‘V(1+V)Uy:| (2-9)

i

o —

[(1 Vo) oy 1(1+v)(rx] 2-10)

0]

2 e} 2, -
]_1’ v . —luv
u = -f [d_Q + ( —————— ) (1)2 G} ie 'Y ¢_1u_)
! (2-11)
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where E is the elastic modulus and v is the Poisson’s ratio.

—iwy dw

a

(2-12)

By eliminating ¥ in equations (2-7) and (2-8), and by solving the resulting differential

equation in G, the general solution may be shown to be of the form

G = (A+By)e ®V+(C+Dy)etlol

(2-13)

where A, B, C and D may, in general be functions of w and they are determined by appropriate

boundary conditions.

In the absence of any thermal effects or temperature fieids, the boundary conditions
for the coating/substrate system, as shown schematically in figure 2-1, may be readily expressed

ds

<Uy1>y1 -0 = -p(x)

(7o), o = 4(5)
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(Ln?)_vz = ® =0 (2-14h)

where the subscripts 1 and 2 denote the coating and substrate respectively. The variables yi
and y2 are measured respectively from the coating surface and the coating/substract interface.

The above eight boundary conditions result in eight simultaneous algebraic equations
for the coefficients A1, Bi, C1. Dy, A2, B2, C2, D2. Obviously conditions (2-14g) and (2-14h)
resultinC2 = D7 = 0)). The remaining six algebraic equations are easily solvable for prescribed
surface pressure, p(x), and surface shear, g(x).

Although when the coating is bonded to the substrate the strains are always continuous
at the interface, the influence of different thermal coefficient of expansion is modeled, as a
first approximation, in terms of a discontinuous strain boundary condition . Thus for a
temperature rise, T, at the coating/substrate interface, the boundary condition (2-14f) is
replaced by

<Fx'>y| —n (g'”) y=0 (@ —a) T

where a1 and a2 are the thermal coefficient of expansion respectively for the coating and
substrate, and T is the temperature rise above nominal conditions.

In the absence of a rigorous thermal analysis, we further assume that the temperature
profile at the coating/substrate interface is proportional to the contact pressure at the coating
surface. Thus, for any prescribed maximum temperature in the contact, the required temper-
ature profile is computed from the given pressure distribution at the coating surface.

Based on the above analytical formulation, the available computer code LAYER is
modified for the thermal boundary condition (2-15). Such a modified version provides results
to assess the significance of the thermal mismatch in properties of the coating and substrate.
A more detailed analysis shall be undertaken in the second phase of this project. where a
detailed temperature field, as presently computed for the finite element, shall be incorporated
in the numerical integral solution model.

To compare the results from the finite element model with those obtained with the
above numerical formulation, parametric runs are made with identical material properties and
coating thickness. In addition, some parametric runs are made as a function of varying material
propertics, coating thicknesses and operating temperatures to establish the practical design
significance of the overall modeling approach.




3. RESULTS

In order to validate the finite element model, the first set of results are obtained without
any surface coating. These solutions may be compared directly with those obtained by the
classical Hertz theory. In fact, comparison of the results obtained by both the finite element
and Fourier transform approach with the Hertz solutions strengthens the practical significance
of bothmodels. Once these fundamental validations are made, the results obtained with coated
solids with both models are then compared. Finally, some parametric results are obtained to
prove the overall technical feasibility and establish the significance of the modeling approach
for practical design and materials selection. '

3.1 Model Validation

In the absence of any surface coating and with an elliptical pressure distribution on the
surface, numerical solutions for the stresses, ox and 6y, as a function of the depth coordinate
(v axis) are compared with the corresponding Hertz solutions in table 3-1; note that oy, in all
the tables presented below, is the Hertzian contact pressure —pn. Clearly, the finite element
solutions and the predictions of the Fourier transform model are very close to the Hertz
solution. In fact, the maximum deviation from the Hertz solutions is approximately 19%. This
deviation can be further reduced by refining the mesh size and moving the distant boundary
farther than the present value of 100 times the half width while setting up the finite element
model. Some of these refinements greatly increase the mass storage and computing time
requirements, which impose some restrictions on use of the model on a personal computer
system. The use of a main frame computer system will certainly help in this regard. For most
practical purposes, however, a deviation of about 1% is quite acceptable, and the model, in its
present form, has reasonable design significance.

Table 3-1
Comparisons with Hertz Solutions
y Hertz Solution Finite Element Solution Fourier Solution

I Ox/Oh OylOn Ox/On Oylon UxlOh Oylon
10.0091127 | 0.981899 | 0.999958 | 0.9719 1.000 0.9761 0.9916
0.09988 0.815139 | 0.995049 | 0.8043 0.9958 | 0.8163 0.9916

0.26875 1 0567735 | 0.965732 | (1.5566 ().9655 0.5679 0.9655 |

0.57351 | 0.291086 | 0.867464 | 0.2811 0.8661 02911 | 0.8675
08334 | 0.168499 | 0.768189 | 0.1600 07672 | 0.1685 | 0.7682 |

LOOOO 0121320 1 0707107 | 0131 [ 0./54 | 0421302071

2.1054 0.0218005 | 0.429034 | 0.01548 0.4290 0.02180 jr—().42‘)()
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Similar to the finite element model, the grid size and the upper limits of integration
used while performing a Fourier transform, may further improve the accuracy of the predicted
results. For practical purposes, once again, the results are quite acceptable since the deviation
i$ no more that 1%.

Perhaps the most interesting case for validation of the finite element model is to
compare the stress oy, on the surface as generated by a shear loading. With the selected mesh
size, it is confirmed that the deviation of the numerical results from the Hertzian solutions is
within the above 1% limit. The comparison is shown graphically in figure 3-1, where the
marked points represent finite element solution and the solid line represents the Hertz theory.
The corresponding comparisons of the shear stress as a function of depth are shown in figure
3-2. Again, the model predictions are quite acceptable.

Another set of results is obtained with coated solids with both the finite element and
Fourier transform approach. For a normal elliptical pressure loading on the surface, compar-
ison of predicted stresses versus depth atx = (), by the two models are shown in tables 3-2 and
3-3 respectively for the coating thickness to contact half width ratios (a/h) of 0.25 and 0.50.
Clearly, the solutions are very close to each other. In fact, the deviation is of the same general
order as that seen above while comparing the solutions with the Hertz theory.

Foranapplied elliptical shear loading on the coating surface, the predicted distribution
of shear stress, atx = (), as a function of depth by the two models are compared in tables 3-4
and 3-5. Once again, the deviations between the two solutions are quite small, and both models
are in good agreement with each other.

The above results clearly prove the validity of both models. Both the finite element or
the Fourier transform approach provide acceptable prediction of stresses in coated solids. In
terms of actual implementation for practical design, the finite element model can be effectively
used for arbitrarily complex geometries, while the integral formulation is limited to simplified
contact configurations. On the other hand, the finite element models require some effort in
the pre and postprocessing of the data and overall setup of the problem, while the use of the
numerical integral model is very straightforward. Thus depending on complexity of the
application, both models may have a notable practical significance. For material selection and
preliminary design, the Fourier transformapproach may be very efficient, while for final design
development for critical and complex applications, the finite element approach may provide
acceptable design solutions with minimum number of model assumptions and limitation. For
a more "friendly" implementation, both models may be run over a wide range of contact
configurations and material properties, and a design data base may be generated to catalog
these solutions over a wide range of applications. For a specific design, the data base can then
provide very quick and accurate answers to a range of practical problems. The strengths of the
models in generating such a data base is demonstrated by the parametric runs discussed next.
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Table 3-2

Finite Element vs Fourier Solution
Comparison of Normal Stresses

at h/a = 0.25
yla Finite Element Solution Fourier Solution
Ox/0n Uy/Oh Ox/0h Ox/0
0. 1.412 1.00 1.421 0.9915
0.048682 1.232 0.9991 1.251 (0.9921
| 0.11396 1.005 0.9918 1.026 0.9886
0.2500 0.5367 0.9628 0.5982 0.9617
0.55482 0.2453 (0.8549 0.2547 (0.8562
0.81478 0.1372 0.7540 0.1454 0.7552
1.000 0.08690 0.6737 (.09998 0.6877
Table 3-3
Finite Element vs Fourier Solution
Comparison of Normal Stresses
at h/a = 0.50
yla Finite Element Solution Fourier Solution
Ox/Oh Oy/Oh Ux/On Ox/Th
0. 1.418 1. 1.428 0.9915
0.045625 1.267 0.9986 1.286 0.9917
0.10681 1.079 0.9909 1.099 0.9877
().28369 0.6087 0.9432 0.6272 0.9436
0.50000 0.1906 (.8626 0.1470 0.8615
0.76010 0.1379 (0.7595 0.1461 (0.7608
1.00000 (0.08410 (.6694 (0.08928 .6742
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Table 3-4

Finite Element vs Fourier Solution
Comparison of Shear Stress txy/ op

Ya Finite Element Solution Fourier Solution
0. 0.9962 0.9915
0.048682 0.8758 0.8790
0.11396 0.7248 0.7304
0.2500 0.4576 0.4587
0.55482 0.2463 0.2466
(0.81478 0.1527 0.1515
1.000 0.1050 0.1110
Table 3-5
Finite Element vs Fourier Solution
Comparison of Shear Stresstxy/on
) Via Finite Element Solution Fourier Solution
0. 0.9966 0.9915
0.045625 0.8931 0.8959
0.10681 0.7647 0.7700
0.28369 0.4695 0.4733
(.5000 0.2354 .2350
0.76010 (0.1413 0.1399
1.000 0.09053 0.09152




3.2 Parametric Studies

For the input properties outlined earlier in table 2-1, a number of finite element
solutions are obtained for varying coating thicknesses. Note that the ratio of elastic modulus
of the coating to that of the substrate is held fixed at 2.0 in all the finite element solutions. For
practical applications, this represents a hard coat over a relatively soft substrate. An example
woeuld be ceramic type material over steel. The effect of coating thickness on various stress
components under a normal elliptical loading is shown in figures 3-3 to 3-6. The high modulus
coating tends to spread out the subsurface y force component over a broader area, thereby
providing slightly lower values of oy as the coating thickness increases. Such a behavior is seen
in figure 3-3. The presence of a coating results in an increase in gy, at the surface, as seen in
figure 3-4. As the coating thickness reduces, the strains in the x direction in the coating tend
to become equal to those in the substrate. This results in a higher value of oy in the coating
due to its higher modulus. The discontinuity in stress at the coating/substrate interface, as seen
in figure 3-4, corresponds to the jump in elastic modulus while a continuity in the strain
component is maintained at the interface. Similar behavior is also seen in the variation of
maximum shear stress, which is directly related to oy and oy. Figure 3-5 shows the location of
the maximum skear stress for varying values of coating thickness. Note that for a thin coating,
the maximum shear stress occurs very close to the surface. Figure 3-6 shows the variation of
maximum shear stress on the surface. Again the higher value of shear stress with the presence
of the coating results from the increased value of ux. Note that the maximum shear stress shown
in figures 3-5 and 3-6, is really the principal shear resulting from oy and 0y and it is not the
orthogonal shear stéess 1xy. In fact, by definition of the problem, Tu is zero on the surface.

The influence of surface shear stress as a function of coating thickness is shown in
figures 3-7 to 3-9. Figure 3-7 shows the variation in shear stress as a function of depth. As might
be expected, the shear stress reduces with increasing depth. The surface shear stress acting in
the negative x direction produces compressive vy before the center of contact and a tensile
stress after the center of contact (figure 3-8). The peak value of these stresses increases as the
coating thickness decreases to a limiting value equal to the product of stress with no coating
present and the coating to modulus ratio. Similarly, high values of the maximum shear stress
occurs near the edge of contact, and it tends to increase towards a limiting value as the coating
thickness reduces, as seen in figure 3-9.

The surface temperature rise due to the applied thermal loading is shown in figure 3-10.
The surface teinperature climbs from the bulk temperature of the substrate at the start of the
contact zone to a peak value near the trailing edge of contact where it falls off rapidly as the
heat is conducted away through the solid. The presence of surface convection would cause the
surface temperature to fall off more rapidly beyond the contact zone butwould notsigniticantly
affect its value within the contact. Due to the thermal loading only, the variations of the x
coordinate stress and the maximum shear stress are shown respectively in figures 3-11 and
3-12. The behavior of these stresses tends to follow the general pattern of the temperature
distribution. The v coordinate stress, oy, and the orthogonal shear stress, Ty, are both quite
small.
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The finite element model provides detailed contour plots through the entire solid.
Typical plots for the subsurface stresses and temperatures are shown in figures 3-13 to 3-21.
The numerical values associated with each color shade are defined in the legend included with
the contour map. Each color shade in the contour map represents a stress (or temperature)
value that is less than or equal to the value defined in the legend. The aspect ratios in these
plots have been distorted for clarity. The horizontal dimension of the plots spans four half
widths along the surface. The three tic marks respectively correspond to the start, center and
end of contact zone. The vertical dimension covers only one half width. Figures 3-13 and 3-14
show respectively the normal and shear stress profiles for the Hertzian case. Note the
maximum shear stress occurs at a certain depth (figure 3-14). This depth is generally used in
computation of fatigue life in rolling bearings where the material is subjected to cyclic loading.
For a relatively thin coating, h/a = 1/8 the coordinate stress, oy and the maximum shear stress
tm are shown in figures 3-15 and 3-16 respectively. Note the discontinuity in stresses at the
coating/substrate interface. The coordinate shear stress Txy, however, is, continuous across the
interface, as seen in figure 3-17.

The temperature contours used in the thermal stress computations are shown in figure
3-18. Note the thermal boundary layer behavior that occurs in a high-specd contact. For the
purpose of comparison, a second case of thermal loading is obtained by reducing both the
Peclet Number (which represents a reduction in speed) and the thermal conductivity of the
coating by a factor of 2. The resulting temperature contours, as shown in figure 3-19, indicate
both an increased depth of propagation into the solid (due to reduced Peclet Number) and
high values of the surface temperature (due to decreased thermal conductivity). The solutions
for the coordinate stress, dx, corresponding to these two temperature distributions are shown
in figures 3-20) and 3-21.

‘The above results clearly demonstrate the technical feasibility of the finite element
approach. Since all stresses are scaled relative to the maximum applied pressure or shear stress,
the solutions may be applicd to any applied loading. Similarly, all lincar dimensions are scaled
relative to the contact half width, thus the results may be applied to a wide range of coating
thicknesses. However, results are shown for only one value of the ratio of the elastic modulus
of the coating to that of the substrate. Also, for the purpose of proving the technical feasibility
of the modeling approach, a simple two-dimensional line contact configuration is considered
above. This permits validation of the finite element solutions with those obtained by other
numerical techniques. In general, however, the finite element modeling approach is applicable
to any contact geometry. For effective practical application of the model, dimensionless
solutions similar to the ones discussed above may be generated over a large range of geomet-
rical and operational parameters to establish a design data base. This data base can then be
readily used to carry out design optimization for any given application.

To further establish the design significance of modeling approach, a series of results,
similar to the ones discussed above, are obtained by executing the computer program LAY TR,
based on the Fourier transform approach. The results are applied to a 30 mm bore solid-lu-
bricated ball bearing, operating at 70,000 rpmwith a thrust load of 1,000 N and a rotating radial
foad of 500 N. The bearing dynamics analysis based on the computer program ADORE [ 14]
reveals that for such an application typical values of contact stresses and half width assume
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Figure 3-13. Stress contours for g under normal loading without a coating.
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Figure 3-14. Contours of maximum shear stress under normal loading with-
out a coating.

33



gfxlO5

Ph

MR -125852
G2 -110205

IR -04557

-78%06
: gierd -63262
-47614
e -31667
£ -16319
[ -671.2

Figure 3-15. Contours of stress, gx, under normal loading with h/a = 1/8.
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Figure 3-16  Contours of maximum shear stress under normal loading with
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Figure 3-17. Contours of coordinate shear stress, xy, under normal loading

with hfa = 1/8.
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Figure 3-18. Temperature map used in the thermal stress computations.
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Figure 3-19. Temperature map under reduced Peclet number and increased
thermal conductivity of the coating.
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Figure 3-20. Contours of ux under the temperature field of figure 3-18.
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Figure 3-21.
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Contours of ox under the temperature field shown in figure 3-
19 for reduced Peclet number.
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values of 10° Pa and 1077 M. When the dimensionless results obtained by executing the
program LAYER are applied to this problem, pertinent stresses may be related to the applied
coating thickness and therefore, practical guidance on the coating substrate design may be
obtained. Typical results are shown in figure 3-22, where the maximum coordinate shear stress,
which occurs close to the edge of the contact, is piotted as a funciion uf cuating thickness for
two different values of the elastic modulus of the coating. The coating surface is loaded with
an elliptically distributed normal loading with a maximum pressure of 10° Pa. The substrate is

assumed to be a bearing steel with a modulus of 2.0x10!! Pa. The higher coating modulus is
representative of ceramic materials, while the lower modulus value simulates a relatively soft
coating of some solid lubricant materials. The results show that the interfacial shear stresses
first increase with increasing coating thickness, and beyond a certain value of the coating
thickness, the shear stress begins to drop. Thus some guidance on required "break-away" shear
stress may be obtained. This may help determine the coating application techniques and
procedures.

Inaddition to the normal loading discussed above, the coating surface may be subjected
to a shear stress result from relative sliding due to ball slip or skid. In order to simulate such
a condition, additional solutions are obtained with an elliptically distributed shear stress. The

peak value of the shear stress is assumed to be 108 Pa, which culiesponds to a friction
coefficient of (.10. As already discussed earlier with the finite element solutions, the shear
stress at the surface induced tension at the coating/substrate interface. Again, the maximum
tension occurs near the entrance to the contact zone. Typical results are shown in figure 3-23.
Tension at the interface tends to reduce with increasing coating thickness for both the hard
and soft coats.

The solutions of figures 3-22 and 3-23 may be superimposed to obtain a combined effect
ol normal and shear ioadings on the coating surface. Thus failure under both tension and
interfacial shear may be modeled, and substantial guidance for the required break-away
stresses may be obtained.

Aside from the mechanical loading discussed above, the thermal loading, resulting from
the heat generated at the coating surface, becomes important particularly when the thermal
coefficient of expansion of the coating is greatly different from that of the substrate. For

o . . . . . . —¢
example, the coefficient of thermal expansion for ceramic material, such as SiN, is 2.9 x107"

M/M/C, while that of M50 bearing steel is 12.3x107% M/M/’C. Under such a thermal
mismatch, the nterfacial shear stresses may be greatly altered, and it is essential to revise the
coating/substrate adhesion or break-away stress requirements. Under the simplified assump-
tions of the temperature field, discussed earlier in section 2, figure 3-24 shows an increase in
the maximum orthogonal shear stress at the coating/substrate interface with the increasing
temperature rise in the contact for two difterent values of coating thickness. Once again, these
stresses may be linearly superimposed on those obtained with mechanical loading to derive
the required failure limits for the combined effects.

‘The above discussion illustrates application of the model results to an actual problem.
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Once again, it may be emphasized that for most design applications, it may not be necessary
to solve the integral problem, once a design data base of dimensionless solutions over a range
covering the design parameters is available. In fact, after proving the technical feasibility of
the modeling approach in the present Phase I, the generation of such a design data base shall
be undertaken in Phase II of this project. In addition to the two-dimensional problem,
discussed above, the Phase I work scope shall include modeling of the more complicated
three-dimensional problem. The following discussion of a preliminary three-dimensional
model provides added support for the finite element approach to modeling any contact
geometry.

3.3 Three-Dimensional Finite Element Modeling

Modeling of a three-dimensional contact greatly increases both the mass storage and
computing speed requirements, which adds to the limitations of PC-ANSYS and the use of
personal computer systems for finite element modeling. However, for the purpose of feasibility
demonstration, once again, PC-ANSYS is used to model a simple three-dimensional problem.
The grid structure is kept relatively coarse, in order to make the finite element code workable
within the storage limitations of the available personal computer system. A uniform pressure
over a rectangular contact region is assumed on the coating surface. The element geometry
and loading conditions are schematically shown in figure 3-25. The aspect ratio is somewhat
distorted but the complete grid is shown. The shaded area represents the load region. The
surface boundaries are defined by x = +5a and z = 5b with b/a = 2. The depth of the solid
corresponds toy = Sa. A symmetry conditioninz direction isimposed by requiring zero normal
deflection at z=(0. As in the two-dimensional model, discussed above, a zero deflection
condition is imposed at the y boundary of the solid, and remaining surfaces, with the exception
of the contact zone, are assumed to free of any loads. The PC-ANSYS supplied three-dimen-
sional isoparametric element having 8 nodes and 3 degrees of freedom at each node is used.
All material properties are assumed to be identical to those used in the two-dimensional
modeling.

Solutions are first obtained without any coating. A consistency check on the solutions
is obtained by computing the surface loads and comparing them with the applied boundary
conditions. Figure 3-26 shows the results. The discrepancy in the finite element solutions is
clear when the plotted solution is compared with a rectangle. Considering the rather coarse
grid used in generating this solution, this deviation is quite acceptable. Typical stress solutions
are shown in figure 3-27, where the variation in g, with depth is plotted at various values of
z/a in the y—z plane, defined by x=0.

Similar to the above solutions, figures 3-28 and 3-29 show solutions with a coating of
thickness, b = 0.25a. The variation of computed stress ox along the x axis is shown in figure
3-28 while the distribution along the z direction is plotted in figure 3-29. For comparison, the
solutions for the no coating case (h/a = () are also plotted. Again, the deviations from a true
rectangle are quite acceptable in view of the coarse grid. A contour map of the surface loading,
as shown in figure 3-30, further elaborates on the computed surface loading.




-2

Figure 3-25. Finite element grid structure on the surfuce for a three-dimen-
sional model.
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The above solutions clearly demonstrate the strength of the finite element approach to
modeling a three-dimensional contact geometry. These solutions, when combined with the
two-dimensional solutions and the validations against the solutions obtained by the Fourier
transform approach, and those predicted by the classical Hertz theory, prove the feasibility of
the modeling approach to the design of coated solids.
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4. SUMMARY

The personal computer based PC-ANSYS finite element code is used to develop a
finite element approach to model stresses in coated solids is considered. A plane-strain
problem is first considered to prove technical feasibility of the approach. Parametric runs over
several design parameters, such as coating thickness, materials properties and operating
conditions, demonstrate the practical significance of the model. Extension of the plane strain
model to the more complicated three-dimensional contact is demonstrated by modeling a
rectangular contact area with uniform pressure. This preliminary three-dimensional model,
along with the validated results of the two-dimensional model, clearly demonstrate the
technical feasibility and practical design significance of the modeling approach. In addition,
the preliminary models provide a strong technical foundation to develop more rigorous and
sophisticated models for a wide range of practical applications.

The stress distributions in the coating and substrate are computed with the coated
surface subjected to elliptically distributed normal and shear loadings under plane strain
conditions. To model thermal loading, the temperature distribution in the entire solid,
resulting from a prescribed heat flux on the coating surface, is first computed by a finite
difference analysis; the computed temperatures are then input to the finite element model and
the resulting thermal stresses are computed. In the absence of a coating, predictions of the
finite element model are shown to agree with the classical Hertzian theory with a maximum
of 1% deviation. With the coating present, a well established Fourier transform approach is
used to validate the predictions of the finite element model. Once again, the deviation of the
stress distributions obtained by both these models is shown to be less than 1%.

With an elliptically distributed heat flux on the coating surface, the thermal stresses in
the entire solid are calculated to further establish the practical significance of the finite
element model. In parallel, the Fourier transform approach is modified to permit an arbitrary
displacement boundary condition at the coating/substrate interface to provide a preliminary
model to simulate a thermal mismatch due to different thermal coefficient of expansion of the
coating and substrate materials. Parametric runs as a function of coating thickness, and applied
thermal and mechanical loadings demonstrate the practical significance of the models for
materials selection, coating thickness optimization, and selection of coating application tech-
niques and procedures to permit acceptable limiting shear and "break-away" stress limits in
the coating and at the coating/substrate interface.

Validation of the three-dimensional model with a rectangular loading is tested by back
calculating the boundary loading and comparing it with the applied conditions. Such compar-
isons are carried out both with and without a coating, and the results in both cases are quite
encouraging.

For a three-dimensional contact, relevant to geometrically complicated interactions,
the mass storage and computing speed requirements impose some restrictions on the use of
personal computer systems and a demand for a more advanced computer work station or a
mainframe computer system becomes clear. However, the results obtained with the PC-
ANSYS system do prove technical feasibility of the overall approach and they provide a sound
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analytical foundation for a more rigorous development in the future. In addition, the paramet-
ric results have some immediate significance for practical design of coated solids subjected to
concentrated contact loads.




5. RECOMMENDATIONS FOR FUTURE DEVELOPMENT

Results of this Phase | investigation prove the technical feasibility and practical
significance of the overall analytical approach to modeling of stresses in coated solids. The
good agreement between the finite element approach, the numerical integral formulations,
and the classical Hertz type solutions establishes the predictive strengths of the models. While
the Fourier transform approach provides accurate numerical solutions to simplified contact
configurations, the finite element models are applicable to arbitrary geometries, and they
permit modeling of fairly complex mechanical and thermal loading. In practice, the process of
materials selection and development consists of simple friction and wear tests where the
coatings are applied to simple specimens with well defined geometry. Once the materials are
proven insuch test, the coatings are applied to real components, such as bearings, gears, piston
rings or liners, and similar mechanical componcnts. Thus it is essential to develop analytical
modeling techniques for both simplified contact configurations and complicated contacts with
complex geometries and loadings. Further advancement of both the numerical integral models
and the finite element techniques is, therefore, essential. The following are some recommen-
dations for further development.

1. The current plane strain integral model, and the computer program, LAYER, should
be extended to treat multiple coatings. This will be extremely useful in modeling composite
solids. Furthermore, by making the coating thickness small, an almost continued variation in
properties throagh the solid can be modeled.

2. The plane strain model should be extended to treat any prescribed temperature field.
In fact, a thermal model, similar to the one discussed in this report, should be incorporated in
the plane strain integral model to automatically calculate the temperature field and the
resulting thermal stresses in the solid.

3. The effort in the above two steps can be combined to model the effect of property
variation as a function of temperature. Thus the net effect of both the thermal stresses due to
the applied temperature field and the change in mechanical stresses due to altered fundamen-
tal properties can be simultaneously determined. Aside from designers, such a model will be
valuable to be materials development scientists and chemists.

4. Experimental validation of analytical predictions is essential to enhance the design
strengths of the models. Some of the available failure data may be used to validate the model
for predictions of interfacial tensile and shear stresses.

5. Modeling of elliptical contacts is another extension of the current plane strain model.
This can be a rather complex task because the current Fourier transforms have to be replaced
with more complex Hankel transforms.

6. The finite element techniques can be easily advanced to model three-dimensional
contacts. Perhaps, this approach may provide solutions to elliptical contacts fairly efficiently.
It may be essential to develop these models on a main frame computer due to rather large
mass storage and fast computing speed requirements.




7. For practical implementation of the finite element models, there are several areas
which require development. Automatic mesh and load generators are essential for efficient
problem definition. The finite element packages, such as NASTRAN and ANSYS, require an
input data file, the preparation of which can become fairly tedious as the complexity of the
problem increases. It is, therefore, essential to develop a "pre-preprocessor” to efficiently
assemble the required input data files for the finite element models. Similarly, a "post-

postprocessor” is sometimes essential to present the results in easily understandable engineer-
ing terms.

8. Once a large number of validated solutions are obtained by both finite element and
the Fourier transform approaches, the results may be incorporated into a design data base.
Basically, the results can be cataloged in terms of curve fits and systematic table lookups. Such
a data base can be easily implemented on a personal computer and it can be an efficient tool
for materials developers and practical designers.

9. In addition to the stress solutions, the practical significance of the above data base
can be significantly enhanced by including the available materials property data. Such an
enhancement provides fairly quick and efficient assessment of break-away stresses and iden-
tification of possible failures in a wide range of practical application.

10. The wbove design data base can also be interfaced with full finite element and

numerical integral solutions. This permits easy modeling of problems which are beyond the
limits of the data base.
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APPENDIX
Thermal Analysis of Semi-infinite Solid with a Moving Heat Source

Consider the contact geometry shown schematically in figure A-1. The solid may either
consist of multiple coatings with different properties, or the properties may have a continuous
variation with the depth coordinate y. The conduction equation is written as:

2
peult = 11<K£Z> +-K9¥§
ox dy \ ady ox (A-1)

with the distant boundary condition

im T =0
x| y>oo (A-2)

For convenience, introduce the following dimensionless quantities:

P K PsCs U v

~ ~ ¢ ~ X s Cs

= , C = —' A = ——‘ x = —', =

P = ps Cs Ks a [ Ksa ]

where K, rho, ¢ denote thermal conductivity, density and specific heat respectively. The
subscript, 5, denotes the substrate for a coated solid, or in general, it can represent the base
properties at any characteristic reference point. In fact, the base properties may be chosen

such that the dimensionless quantities, K, p, ¢, are of order 1. The characteristic length, a, is
taken as the contact half width of the region of input flux, as shown in figure A-1.

With the above definitions, equation (A-1) is now written as:

BT _ 9 =0T, KT
pcax - < ) Pax

(A-3)

upscsa
Ks

to speed. Under the conditions of high-speed rolling/sliding contact, such as the ones encoun-

tered in high-speed rolling bearings, the Peclet number is generally very high. As an example,

for steel, the volumetric specific heat pc = 1.10x10° N/M?/°C, and the thermal conductivity,
and the contact half width for a typical 30 mm bore roller bearing operating at a moderate

speed of 35,000 rpm, may be 40 M/Sec and 4.0x107°M respectively. These values result ina
Peclet number of about 120. Thus for many applications of concentrated contacts, a high

where P = , is the Peclet number. For prescribed properties, it really is proportional




Heat flux

a
u
Convection to T,
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layer 1 X [—a
layer 2
substrate 1y T,

Figure A-1.  Coordinate schematic for the thermal model.
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Peclet number approximation is quite reasonable. Thus, the last term in equation (A-3) may
be dropped and the conduction equation may be written as:

~~8T 9 =0Ty ~~
P Ky x>0

(A-4)
with the boundary conditions
T=0 atx=0, andlim T = 0
yro (A-5)

where y~= yla, a being the half width of contact.

If qo is the amplitude of input flux, the flux distribution in the contact may be written
as

g = qof (x) (A-6)

and the surface input flux condition is written as

K f0. aty=0and 02
ay (A-7)

= T . do d
here T = -, with T, = —
wner rWl r K)

as a reference temperature.

The convective heat transfer condition is

- -,f ~ o~ o~ ~
~K%~= H(T-T,), aty=0andx>2
dy (A-8)
=~ . . . . Ta ry ha .
where Ty is the dimensionless ambient temperature T and H = 7(— is the Nusselt number
r \}

with a heat transfer coefficient A.

For most concentrated contacts it may be reasonable to assume that the heat flux is

proportional to the contact pressure. Thus the heat flux function in equation (A-6) may be
written as
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—

f(x~) = [1 - (xN— 1 )2] W, O=x=<2 (A-9)

For any aroitrary variation in properties, the above equations are best solved numeri-
cally by finite difference approximations. A grid structure, shown schematically in figure A-2,
1s chosen starting atx = y= 0. For brevity, the is dropped in all the following formulation for
numerical analysis.

For performing heat flow balance over the dotted rectangle, as shown in figure A-2,
the heat flow out of the rectangular across the surface ¢ is written as

ol U T+ = T} 1 Ti+i+1 — Ty ,
K’[z( Ayi ) +2( i Asj

and the heat flow out of the rectangle across surface b is written as
1 1
P ['2'/3:'—1 ci-1Tj+1i-1+ Epi—l Ci—1Tj+1, A}’i]

In the above expressions Axj = xj+1 —xj and Ayi = yi+1 — yi; and, the properties,
Ki, pi, ci prevail in the interval yi<y<yi+1.

Using the above relations, the flow across all four sides of the rectangle may be written
and the sum may be equated to zero to derive the following equation:

P (Tj,i - Tj+1,i> (Pi-1ci-18yi-1 + pci Ayi) +

Ax.
Ki (Tj,i+1 = Tjj+ Ti+1j+1 — Tj+1,i)xyf -

M.
Ki-1 (Tj,i = Tii-1+ Tj+1i = Tj+1i-1 ) Ay =0 (A-10)

The above equation applies to the interior points defined by j> 1, 1<i<m, where m is
the total number of points in the y direction. Also, the boundary condition at y= o is applied
aty=ym.

The boundary conditions at x=0 and at y=y,, result in the following boundary values

T1J=O and Tj',n = () (A-”)

Similar heat flow balances may be obtained over the "half" rectangles bounding the
surface with flux inputs corresponding to equations (A-7) and (A-8). The resulting equation
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Figure A-2. Numerical grid structure for the finite difference computation.




ati= 1> s written as

Ppici (1 - T+ ) + (i + i+ )Arj - H ('r,_,- + Tj+1j = 2 7;,)A\-,~

Axj
YR T T4 Ties T A
i (‘1'[~l+l 4 JHa+1 ‘/+I,1) Avy 0 (A-12)

Equations (A-10) to (A-12) when used to solve for Tj+1, represent a modified Crank-
Nicholsen approach which is generally stable and provides quadratic accuracy. The equations
for any column j may be written in the form

CiTii+DiTivi+eiTi-1 = Ki (A-13)
where R; depends on Tj- 1,4, which is obtained from equation (A-11) for j=1 and the previous
solution to equation (A-13) for j> 1. The remaining coefficients are independent of tempera-
ture.

If we look for a solution in the form

Tii-1 = 4Ty + Bi (A-14)

then by substituting 7j;~1 in equation (A-13) and solving for Tj; we obtain

Tiy = Aiv1Thi+1 + Bivi (A-15)
where
dinr = — P
At Ci+eiAd; (A-10)
and
Ri— ¢i B;
Bi+ = 'l ‘
Ci + &4, (A-17)

Since the temperatures startati=1 we cantake A1 = By = (), thenuse equations (A-16)
and (A-17) to calculate all A and B values up to 4 and By, From equation (A-11) Tjn = 0,
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hence, equation (A-14) may be used to calculate the remaining temperatures from Tj,n—1 to
Tj,1. The procedure is then repeated for the next column until the required temperature map
is obtained.

The above method of solution for the temperatures in a given column implements a
Riccati transformation which provides good numerical accuracy even for relatively long spans
in the y coordinate.

In the event the properties are assumed to be constant and the convection term is
neglected, the solution may be written in terms of an integral. This is accomplished by
substituting K=p =c =1 and H = ( and by solving equations (A-4) to (A-7) by Laplace
transforms. The temperature distribution as a function of the input flux is written as

T(x,0) = an—,,fx —%d(’
o (x—x) (A-18)

The above relation may be readily used to check out the numerical results when
implementing the above general procedure in a computer code. Also, the above relation
suggests using an effective temperature

as a characteristic dimensional parameter for temperatures.
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